ECED 3300
 Tutorial 3

Problem 1

Verify Gauss's theorem for the field $\mathbf{F}=\mathbf{a}_{\rho} \rho+\mathbf{a}_{z} z$ and a quarter cylinder, $0 \leq \phi \leq \pi / 2$, $0 \leq z \leq h$ and $0 \leq \rho \leq R$.

Solution

1) Bottom surface: $z=0, \mathbf{a}_{n}=-\mathbf{a}_{z}, \mathbf{F}(z=0) \cdot \mathbf{a}_{n}=0$; Top surface: $\mathbf{a}_{n}=\mathbf{a}_{z}, \mathbf{F}(z=h) \cdot \mathbf{a}_{n}=h$, $d S=\rho d \rho d \phi$.
2) Walls: $\mathbf{a}_{n}=\mathbf{a}_{\rho}, \mathbf{F}(\rho=R) \cdot \mathbf{a}_{n}=R, d S=R d \phi d z$.
3) End faces, $\phi=0$ and $\phi=\pi / 2, \mathbf{a}_{n}=\mathbf{a}_{\phi}$ such that $\mathbf{F} \cdot \mathbf{a}_{n}=0$. Thus,

$$
\int_{\text {top }} d \mathbf{S} \cdot \mathbf{F}=\int_{0}^{R} d \rho \rho \int_{0}^{\pi / 2} d \phi h=\pi h R^{2} / 4
$$

and

$$
\int_{\text {walls }} d \mathbf{S} \cdot \mathbf{F}=\int_{0}^{h} d z \rho \int_{0}^{\pi / 2} d \phi R^{2}=\pi h R^{2} / 2
$$

Thus,

$$
\oint d \mathbf{S} \cdot \mathbf{F}=\int_{\text {top }} d \mathbf{S} \cdot \mathbf{F}+\int_{\text {walls }} d \mathbf{S} \cdot \mathbf{F}=3 \pi h R^{2} / 4
$$

On the other hand,

$$
\begin{aligned}
\nabla \cdot \mathbf{F} & =\frac{1}{\rho} \partial_{\rho}\left(\rho F_{\rho}\right)+\partial_{z} F_{z}=2+1=3 . \\
\int d v \nabla \cdot \mathbf{F} & =3 \int_{0}^{h} d z \int_{0}^{R} d \rho \rho \int_{0}^{\pi / 2} d \phi=3 \pi h R^{2} / 4 .
\end{aligned}
$$

Problem 2

Given $\mathbf{F}=x^{2} \mathbf{a}_{x}+y^{2} \mathbf{a}_{y}+\left(z^{2}-1\right) \mathbf{a}_{z}$, find $\oint_{S} d \mathbf{S} \cdot \mathbf{F}$ where the surface S is defined by $\rho=2$, $0 \leq z \leq 2$ and $0 \leq \phi \leq 2 \pi$.

Solution

As S is a closed surface, we can take advantage of Gauss's theorem,

$$
\begin{equation*}
\oint_{S} d \mathbf{S} \cdot \mathbf{F}=\int_{v} d v \nabla \cdot \mathbf{F} . \tag{1}
\end{equation*}
$$

Further, the divergence is independent of a coordinate system. Hence using Cartesian coordinates,

$$
\nabla \cdot \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}=2(x+y+z)
$$

Transforming to cylindrical coordinates, we obtain

$$
\begin{equation*}
\nabla \cdot \mathbf{F}=2(x+y+z)=2(\rho \cos \phi+\rho \sin \phi+z) \tag{2}
\end{equation*}
$$

It follows from Eqs. (1) and (2) that

$$
\begin{align*}
& \oint_{S} d \mathbf{S} \cdot \mathbf{F}=\int_{v} d v \nabla \cdot \mathbf{F}=2 \int_{0}^{2} d \rho \rho \int_{0}^{2 \pi} d \phi \int_{0}^{2} d z(\rho \cos \phi+\rho \sin \phi+z) \\
& =2[\int_{0}^{2} d \rho \rho \int_{0}^{2 \pi} d \phi \int_{0}^{2} d z z+\int_{0}^{2} d \rho \rho^{2} \underbrace{\int_{0}^{2 \pi} d \phi \cos \phi}_{=0} \int_{0}^{2} d z+\int_{0}^{2} d \rho \rho^{2} \underbrace{\int_{0}^{2 \pi} d \phi \sin \phi}_{=0} \int_{0}^{2} d z] \\
& =\left.2 \frac{\rho^{2}}{2}\right|_{0} ^{2} \times 2 \pi \times\left.\frac{z^{2}}{2}\right|_{0} ^{2}=16 \pi \tag{3}
\end{align*}
$$

Problem 3

One of Maxwell's equations states that any magnetic field must be solenoidal, that is $\nabla \cdot \mathbf{B}=0$. Use this information to determine the flux of a uniform magnetic field, $\mathbf{B}=\mathbf{a}_{z} B, B=$ const through the curved surface of a right circular cone of radius R and height horiented so that \mathbf{B} is normal to the cone base which is located in the xy-plane. The cone axis coincides with the z-axis.

Solution

Since the cone is a closed surface, we can apply Gauss's theorem to it

$$
\oint d \mathbf{S} \cdot \mathbf{B}=\int d v \nabla \cdot \mathbf{B}=0 .
$$

Thus, the magnetic field flux trhough the entire cone surface must be zero. It then follows at once that $\oint d \mathbf{S} \cdot \mathbf{B}=0 \Longrightarrow \int_{\text {curved }} d \mathbf{S} \cdot \mathbf{B}=-\int_{\text {base }} d \mathbf{S} \cdot \mathbf{B}$. Hence, figuring out the flux through the curved surface boils down to determining the flux through the base. The latter is straightforward. At $z=0, \mathbf{a}_{n}=-\mathbf{a}_{z}$ and $d S=\rho d \rho d \phi, \mathbf{B}=\mathbf{a}_{z} B$. Thus,

$$
\int_{\text {curved }} d \mathbf{S} \cdot \mathbf{B}=-\int_{\text {base }} d \mathbf{S} \cdot \mathbf{B}=-\int_{0}^{2 \pi} d \phi \int_{0}^{R} d \rho \rho\left(-\mathbf{a}_{z} \cdot \mathbf{a}_{z}\right) B=\pi R^{2} B
$$

Problem 4

Employ the divergence theorem to show that for any closed surface enclosing a volume V,

$$
V=\frac{1}{3} \oint_{S} d \mathbf{S} \cdot \mathbf{r}
$$

where $\mathbf{r}=\mathbf{a}_{x} x+\mathbf{a}_{y} y+\mathbf{a}_{z} z$ is a radius vector to an arbitrary point. Use this result to figure out the volume of
a) a rectangular parallelepiped with sides a, b and c;
b) a sphere of radius R,
c) a right circular cone of height h and base radius R.

Solution

Consider the divergence theorem for $\mathbf{F}=\mathbf{r}$,

$$
\oint_{S} d \mathbf{S} \cdot \mathbf{r}=\int d v \nabla \cdot \mathbf{r} .
$$

By definition, $\nabla \cdot \mathbf{r}=\partial_{x} x+\partial_{y} y+\partial_{z} z=3$. It follows that $\int d v \nabla \cdot \mathbf{r}=3 \int d v=3 V$. Finally,

$$
V=\frac{1}{3} \oint_{S} d \mathbf{S} \cdot \mathbf{r}
$$

Q.E.D.
a) Choose a Cartesian coordinate system with the origin at the parallelepiped center, $-a / 2 \leq x \leq$ $a / 2,-b / 2 \leq y \leq b / 2$ and $-c / 2 \leq z \leq c / 2$. By symmetry, it's enough to consider just one side, $x= \pm a / 2$, say. At $x= \pm a / 2, \mathbf{a}_{n}= \pm \mathbf{a}_{x}, d S=d y d z$. Generalizing,
$3 V=\int_{-b / 2}^{b / 2} \int_{-c / 2}^{c / 2} d y d z[a / 2-(-a / 2)]+\int_{-a / 2}^{a / 2} \int_{-c / 2}^{c / 2} d x d z[b / 2-(-b / 2)]+\int_{-a / 2}^{a / 2} \int_{-b / 2}^{b / 2} d x d y[c / 2-(-c / 2)]=3 a b c$.
It follows

$$
V=a b c
$$

b) For a sphere, $\mathbf{a}_{n}=\mathbf{a}_{r}$ and using the spherical coordinates, $\mathbf{r}=\mathbf{a}_{r} r$ such that on the surface, $\mathbf{r}=R \mathbf{a}_{r}$ and $d S=R^{2} \sin \theta d \theta d \phi$

$$
V=\frac{1}{3} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta R^{2} \times R\left(\mathbf{a}_{r} \cdot \mathbf{a}_{r}\right)=4 \pi R^{3} / 3
$$

c) Let us place the cone so that its apex is at the origin. One then immediately observes that everywhere on the curved surface $\mathbf{r} \cdot \mathbf{a}_{n}=0$. Hence, the curved surface makes no contribution to
the flux. The flux of $\mathbf{r}=\mathbf{a}_{\rho} \rho+\mathbf{a}_{z} z$ through the base at $z=h$ is easy. Indeed, at $z=h \mathbf{a}_{n}=\mathbf{a}_{z}$ such that $\mathbf{r} \cdot \mathbf{a}_{n}=h$ and $d S=\rho d \rho d \phi$. Finally,

$$
V=\frac{1}{3} \int_{0}^{2 \pi} d \phi \int_{0}^{R} d \rho \rho h=\pi R^{2} h / 3 .
$$

Problem 5

Show that $\oint_{S} d S \mathbf{a}_{n}=0$ for any closed surface S.

Solution

Consider an arbitrary constant vector a. Take a dot product of a and $\oint_{S} d S \mathbf{a}_{n}$,

$$
\mathbf{a} \cdot \oint_{S} d S \mathbf{a}_{n}=\oint_{S} d S\left(\mathbf{a} \cdot \mathbf{a}_{n}\right)=\oint_{S} d \mathbf{S} \cdot \mathbf{a}=\int d v \nabla \cdot \mathbf{a}=0
$$

The last line follows from the fact that \mathbf{a} is a constant vector. Hence we have shown that for an arbitrary constant vector \mathbf{a},

$$
0=\oint_{S} d S\left(\mathbf{a} \cdot \mathbf{a}_{n}\right)=\mathbf{a} \cdot \oint_{S} d S \mathbf{a}_{n}
$$

It then follows that it can happen iff

$$
\oint_{S} d S \mathbf{a}_{n}=0
$$

Q.E.D.

