ECED 3300 Tutorial 3

Problem 1

Verify Gauss's theorem for the field $\mathbf{F} = \mathbf{a}_{\rho}\rho + \mathbf{a}_{z}z$ and a quarter cylinder, $0 \le \phi \le \pi/2$, $0 \le z \le h$ and $0 \le \rho \le R$.

Solution

1) Bottom surface: z = 0, $\mathbf{a}_n = -\mathbf{a}_z$, $\mathbf{F}(z = 0) \cdot \mathbf{a}_n = 0$; Top surface: $\mathbf{a}_n = \mathbf{a}_z$, $\mathbf{F}(z = h) \cdot \mathbf{a}_n = h$, $dS = \rho d\rho d\phi$.

- 2) Walls: $\mathbf{a}_n = \mathbf{a}_{\rho}$, $\mathbf{F}(\rho = R) \cdot \mathbf{a}_n = R$, $dS = Rd\phi dz$.
- 3) End faces, $\phi = 0$ and $\phi = \pi/2$, $\mathbf{a}_n = \mathbf{a}_{\phi}$ such that $\mathbf{F} \cdot \mathbf{a}_n = 0$. Thus,

$$\int_{top} d\mathbf{S} \cdot \mathbf{F} = \int_0^R d\rho \rho \int_0^{\pi/2} d\phi h = \pi h R^2 / 4$$

and

$$\int_{walls} d\mathbf{S} \cdot \mathbf{F} = \int_0^h dz \rho \int_0^{\pi/2} d\phi R^2 = \pi h R^2/2$$

Thus,

$$\oint d\mathbf{S} \cdot \mathbf{F} = \int_{top} d\mathbf{S} \cdot \mathbf{F} + \int_{walls} d\mathbf{S} \cdot \mathbf{F} = 3\pi h R^2 / 4.$$

On the other hand,

$$\nabla \cdot \mathbf{F} = \frac{1}{\rho} \partial_{\rho} (\rho F_{\rho}) + \partial_z F_z = 2 + 1 = 3.$$
$$\int dv \nabla \cdot \mathbf{F} = 3 \int_0^h dz \int_0^R d\rho \rho \int_0^{\pi/2} d\phi = 3\pi h R^2 / 4$$
Problem 2

Given $\mathbf{F} = x^2 \mathbf{a}_x + y^2 \mathbf{a}_y + (z^2 - 1) \mathbf{a}_z$, find $\oint_S d\mathbf{S} \cdot \mathbf{F}$ where the surface S is defined by $\rho = 2$, $0 \le z \le 2$ and $0 \le \phi \le 2\pi$.

Solution

As S is a closed surface, we can take advantage of Gauss's theorem,

$$\oint_{S} d\mathbf{S} \cdot \mathbf{F} = \int_{v} dv \nabla \cdot \mathbf{F}.$$
(1)

Further, the divergence is independent of a coordinate system. Hence using Cartesian coordinates,

$$\nabla \cdot \mathbf{F} = \partial_x F_x + \partial_y F_y + \partial_z F_z = 2(x + y + z).$$

Transforming to cylindrical coordinates, we obtain

$$\nabla \cdot \mathbf{F} = 2(x+y+z) = 2(\rho \cos \phi + \rho \sin \phi + z).$$
(2)

It follows from Eqs. (1) and (2) that

$$\begin{split} \oint_{S} d\mathbf{S} \cdot \mathbf{F} &= \int_{v} dv \nabla \cdot \mathbf{F} = 2 \int_{0}^{2} d\rho \rho \int_{0}^{2\pi} d\phi \int_{0}^{2} dz \left(\rho \cos \phi + \rho \sin \phi + z\right) \\ &= 2 \left[\int_{0}^{2} d\rho \rho \int_{0}^{2\pi} d\phi \int_{0}^{2} dz \, z + \int_{0}^{2} d\rho \rho^{2} \underbrace{\int_{0}^{2\pi} d\phi \cos \phi}_{=0} \int_{0}^{2} dz + \int_{0}^{2} d\rho \rho^{2} \underbrace{\int_{0}^{2\pi} d\phi \sin \phi}_{=0} \int_{0}^{2} dz \right] \\ &= 2 \frac{\rho^{2}}{2} \Big|_{0}^{2} \times 2\pi \times \frac{z^{2}}{2} \Big|_{0}^{2} = 16\pi. \end{split}$$
(3)

Problem 3

One of Maxwell's equations states that any magnetic field must be solenoidal, that is $\nabla \cdot \mathbf{B} = 0$. Use this information to determine the flux of a uniform magnetic field, $\mathbf{B} = \mathbf{a}_z B$, B = constthrough the curved surface of a right circular cone of radius R and height h oriented so that **B** is normal to the cone base which is located in the xy-plane. The cone axis coincides with the z-axis.

Solution

Since the cone is a closed surface, we can apply Gauss's theorem to it

$$\oint d\mathbf{S} \cdot \mathbf{B} = \int dv \nabla \cdot \mathbf{B} = 0$$

Thus, the magnetic field flux trhough the **entire** cone surface must be zero. It then follows at once that $\oint d\mathbf{S} \cdot \mathbf{B} = 0 \implies \int_{curved} d\mathbf{S} \cdot \mathbf{B} = -\int_{base} d\mathbf{S} \cdot \mathbf{B}$. Hence, figuring out the flux through the curved surface boils down to determining the flux through the base. The latter is straightforward. At z = 0, $\mathbf{a}_n = -\mathbf{a}_z$ and $dS = \rho d\rho d\phi$, $\mathbf{B} = \mathbf{a}_z B$. Thus,

$$\int_{curved} d\mathbf{S} \cdot \mathbf{B} = -\int_{base} d\mathbf{S} \cdot \mathbf{B} = -\int_0^{2\pi} d\phi \int_0^R d\rho \rho (-\mathbf{a}_z \cdot \mathbf{a}_z) B = \pi R^2 B.$$

Problem 4

Employ the divergence theorem to show that for any closed surface enclosing a volume V,

$$V = \frac{1}{3} \oint_S d\mathbf{S} \cdot \mathbf{r},$$

where $\mathbf{r} = \mathbf{a}_x x + \mathbf{a}_y y + \mathbf{a}_z z$ is a radius vector to an arbitrary point. Use this result to figure out the volume of

a) a rectangular parallelepiped with sides *a*, *b* and *c*;

b) a sphere of radius R,

c) a right circular cone of height h and base radius R.

Solution

Consider the divergence theorem for $\mathbf{F} = \mathbf{r}$,

$$\oint_S d\mathbf{S} \cdot \mathbf{r} = \int dv \nabla \cdot \mathbf{r}.$$

By definition, $\nabla \cdot \mathbf{r} = \partial_x x + \partial_y y + \partial_z z = 3$. It follows that $\int dv \nabla \cdot \mathbf{r} = 3 \int dv = 3V$. Finally,

$$V = \frac{1}{3} \oint_{S} d\mathbf{S} \cdot \mathbf{r},$$

Q.E.D.

a) Choose a Cartesian coordinate system with the origin at the parallelepiped center, $-a/2 \le x \le a/2$, $-b/2 \le y \le b/2$ and $-c/2 \le z \le c/2$. By symmetry, it's enough to consider just one side, $x = \pm a/2$, say. At $x = \pm a/2$, $\mathbf{a}_n = \pm \mathbf{a}_x$, dS = dydz. Generalizing,

$$3V = \int_{-b/2}^{b/2} \int_{-c/2}^{c/2} dy dz [a/2 - (-a/2)] + \int_{-a/2}^{a/2} \int_{-c/2}^{c/2} dx dz [b/2 - (-b/2)] + \int_{-a/2}^{a/2} \int_{-b/2}^{b/2} dx dy [c/2 - (-c/2)] = 3abc.$$

It follows

V = abc.

b) For a sphere, $\mathbf{a}_n = \mathbf{a}_r$ and using the spherical coordinates, $\mathbf{r} = \mathbf{a}_r r$ such that on the surface, $\mathbf{r} = R\mathbf{a}_r$ and $dS = R^2 \sin \theta d\theta d\phi$

$$V = \frac{1}{3} \int_0^{2\pi} d\phi \int_0^{\pi} d\theta \sin \theta R^2 \times R(\mathbf{a}_r \cdot \mathbf{a}_r) = 4\pi R^3/3.$$

c) Let us place the cone so that its apex is at the origin. One then immediately observes that everywhere on the curved surface $\mathbf{r} \cdot \mathbf{a}_n = 0$. Hence, the curved surface makes no contribution to

the flux. The flux of $\mathbf{r} = \mathbf{a}_{\rho}\rho + \mathbf{a}_{z}z$ through the base at z = h is easy. Indeed, at $z = h \mathbf{a}_{n} = \mathbf{a}_{z}$ such that $\mathbf{r} \cdot \mathbf{a}_{n} = h$ and $dS = \rho d\rho d\phi$. Finally,

$$V = \frac{1}{3} \int_0^{2\pi} d\phi \int_0^R d\rho \rho h = \pi R^2 h/3.$$

Problem 5

Show that $\oint_S dS \mathbf{a}_n = 0$ for any closed surface S.

Solution

Consider an arbitrary **constant** vector **a**. Take a dot product of **a** and $\oint_S dS \mathbf{a}_n$,

$$\mathbf{a} \cdot \oint_{S} dS \mathbf{a}_{n} = \oint_{S} dS (\mathbf{a} \cdot \mathbf{a}_{n}) = \oint_{S} d\mathbf{S} \cdot \mathbf{a} = \int dv \nabla \cdot \mathbf{a} = 0,$$

The last line follows from the fact that a is a constant vector. Hence we have shown that for an **arbitrary** constant vector **a**,

$$0 = \oint_S dS(\mathbf{a} \cdot \mathbf{a}_n) = \mathbf{a} \cdot \oint_S dS\mathbf{a}_n.$$

It then follows that it can happen iff

$$\oint_S dS \mathbf{a}_n = 0.$$

Q.E.D.