
ECED 3300
Tutorial 3

Problem 1

Verify Gauss’s theorem for the field F = aρρ + azz and a quarter cylinder, 0 ≤ φ ≤ π/2,

0 ≤ z ≤ h and 0 ≤ ρ ≤ R.

Solution

1) Bottom surface: z = 0, an = −az, F(z = 0) ·an = 0; Top surface: an = az, F(z = h) ·an = h,

dS = ρdρdφ.

2) Walls: an = aρ, F(ρ = R) · an = R, dS = Rdφdz.

3) End faces, φ = 0 and φ = π/2, an = aφ such that F · an = 0. Thus,

∫
top
dS · F =

∫ R

0
dρρ

∫ π/2

0
dφh = πhR2/4

and ∫
walls

dS · F =
∫ h

0
dzρ

∫ π/2

0
dφR2 = πhR2/2

Thus, ∮
dS · F =

∫
top
dS · F+

∫
walls

dS · F = 3πhR2/4.

On the other hand,

∇ · F = 1
ρ
∂ρ(ρFρ) + ∂zFz = 2 + 1 = 3.∫

dv∇ · F = 3
∫ h

0
dz
∫ R

0
dρρ

∫ π/2

0
dφ = 3πhR2/4.

Problem 2

Given F = x2ax + y2ay + (z2 − 1)az, find
∮
S dS · F where the surface S is defined by ρ = 2,

0 ≤ z ≤ 2 and 0 ≤ φ ≤ 2π.

Solution

As S is a closed surface, we can take advantage of Gauss’s theorem,

∮
S
dS · F =

∫
v
dv∇ · F. (1)
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Further, the divergence is independent of a coordinate system. Hence using Cartesian coordinates,

∇ · F = ∂xFx + ∂yFy + ∂zFz = 2(x+ y + z).

Transforming to cylindrical coordinates, we obtain

∇ · F = 2(x+ y + z) = 2(ρ cosφ+ ρ sinφ+ z). (2)

It follows from Eqs. (1) and (2) that

∮
S
dS · F =

∫
v
dv∇ · F = 2

∫ 2

0
dρρ

∫ 2π

0
dφ
∫ 2

0
dz (ρ cosφ+ ρ sinφ+ z)

= 2


∫ 2

0
dρρ

∫ 2π

0
dφ
∫ 2

0
dz z +

∫ 2

0
dρρ2

∫ 2π

0
dφ cosφ︸ ︷︷ ︸
=0

∫ 2

0
dz +

∫ 2

0
dρρ2

∫ 2π

0
dφ sinφ︸ ︷︷ ︸
=0

∫ 2

0
dz


= 2

ρ2

2

∣∣∣∣∣
2

0

× 2π × z2

2

∣∣∣∣∣
2

0

= 16π. (3)

Problem 3

One of Maxwell’s equations states that any magnetic field must be solenoidal, that is ∇ · B = 0.

Use this information to determine the flux of a uniform magnetic field, B = azB, B = const

through the curved surface of a right circular cone of radius R and height h oriented so that B is

normal to the cone base which is located in the xy-plane. The cone axis coincides with the z-axis.

Solution

Since the cone is a closed surface, we can apply Gauss’s theorem to it

∮
dS ·B =

∫
dv∇ ·B = 0.

Thus, the magnetic field flux trhough the entire cone surface must be zero. It then follows at once

that
∮
dS · B = 0 =⇒

∫
curved dS · B = −

∫
base dS · B. Hence, figuring out the flux through the

curved surface boils down to determining the flux through the base. The latter is straightforward.

At z = 0, an = −az and dS = ρdρdφ, B = azB. Thus,

∫
curved

dS ·B = −
∫
base

dS ·B = −
∫ 2π

0
dφ
∫ R

0
dρρ(−az · az)B = πR2B.
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Problem 4

Employ the divergence theorem to show that for any closed surface enclosing a volume V ,

V =
1

3

∮
S
dS · r,

where r = axx + ayy + azz is a radius vector to an arbitrary point. Use this result to figure out

the volume of

a) a rectangular parallelepiped with sides a, b and c;

b) a sphere of radius R,

c) a right circular cone of height h and base radius R.

Solution

Consider the divergence theorem for F = r,∮
S
dS · r =

∫
dv∇ · r.

By definition,∇ · r = ∂xx+ ∂yy + ∂zz = 3. It follows that
∫
dv∇ · r = 3

∫
dv = 3V . Finally,

V =
1

3

∮
S
dS · r,

Q.E.D.

a) Choose a Cartesian coordinate system with the origin at the parallelepiped center, −a/2 ≤ x ≤

a/2, −b/2 ≤ y ≤ b/2 and −c/2 ≤ z ≤ c/2. By symmetry, it’s enough to consider just one side,

x = ±a/2, say. At x = ±a/2, an = ±ax, dS = dydz. Generalizing,

3V =
∫ b/2

−b/2

∫ c/2

−c/2
dydz[a/2−(−a/2)]+

∫ a/2

−a/2

∫ c/2

−c/2
dxdz[b/2−(−b/2)]+

∫ a/2

−a/2

∫ b/2

−b/2
dxdy[c/2−(−c/2)] = 3abc.

It follows

V = abc.

b) For a sphere, an = ar and using the spherical coordinates, r = arr such that on the surface,

r = Rar and dS = R2 sin θdθdφ

V =
1

3

∫ 2π

0
dφ
∫ π

0
dθ sin θR2 ×R(ar · ar) = 4πR3/3.

c) Let us place the cone so that its apex is at the origin. One then immediately observes that

everywhere on the curved surface r · an = 0. Hence, the curved surface makes no contribution to
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the flux. The flux of r = aρρ + azz through the base at z = h is easy. Indeed, at z = h an = az

such that r · an = h and dS = ρdρdφ. Finally,

V =
1

3

∫ 2π

0
dφ
∫ R

0
dρρh = πR2h/3.

Problem 5

Show that
∮
S dSan = 0 for any closed surface S.

Solution

Consider an arbitrary constant vector a. Take a dot product of a and
∮
S dSan,

a ·
∮
S
dSan =

∮
S
dS(a · an) =

∮
S
dS · a =

∫
dv∇ · a = 0,

The last line follows from the fact that a is a constant vector. Hence we have shown that for an

arbitrary constant vector a,

0 =
∮
S
dS(a · an) = a ·

∮
S
dSan.

It then follows that it can happen iff ∮
S
dSan = 0.

Q.E.D.
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